Preordered topological spaces, utility and jointly utility functions

Alessandro Caterino

A topological preordered space is a triple (X, τ, \preceq) where X is a set endowed with a topology τ and a preorder \preceq . The preorder \preceq is said to be continuous (or semi-closed) if for each $a \in X$ the sets $[a, +\infty[= \{x \in X : a \preceq x\} \text{ and }] -\infty, a] = \{x \in X : x \preceq a\}$ are τ -closed. The preorder \preceq is said to be closed if its graph $\{(x, y) \in X \times X : x \preceq y\}$ is closed in $X \times X$.

A real function $f: X \to \mathbb{R}$ is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for every $x, y \in X$ and it is a utility function if it is isotone and $x \prec y$ implies f(x) < f(y). A family $\mathcal{U} \subset C(X, \mathbb{R})$ (multi-utility) represents the preorder \leq if $[x \leq y]$ if and only if $\forall f \in \mathcal{U}, f(x) \leq f(y)$]. In a similar way, if R is a binary relation on X, one can define a utility representation of R

Classical theorems of Eilenberg and Debreu state that every continuous total order, defined respectively on a connected separable space and on a second countable space, have a continuous representation. The notions of network and netweight provide useful tools in the theory of representation. In [8], by using these concepts, it is proved the following result that includes the above mentioned results.

Theorem 1 ([8]) Let (X, τ, \preceq) be a preordered topological space where \preceq is a continuous total preorder. If $X = \bigcup_{i \in \mathbb{N}} X_i$, where every X_i is connected separable or has countable network, then \preceq has a continuous representation.

In [2] the existence of a continuous utility function for a binary relation is characterized. In particular, the following result is proved.

Theorem 2 ([2]) Let X be a topological space with countable network and let R be a continuous binary relation on X. Then R has a continuous utility representation.

The utility representation problem was solved by Levin (1983) for non linear closed preorders defined in locally compact second countable spaces.

A generalization of Levin's Theorem to submetrizable k_{ω} -spaces is presented in [7] and, by using a different technique, it is also proved in [2].

The k_{ω} -spaces have nice properties. In [10] the author proves that every k_{ω} -space, equipped with a closed preorder, is normally preordered and that every second countable normally preordered space has a countable utility (multi-utility) representation.

More generally, in [3] it is proved that every normally preordered space with countable netweight has a countable utility representation. Therefore, every submetrizable k_{ω} -space has a countable utility representation too. If X is a topological space and Γ is a set of closed preorders on X, the problem of the existence of jointly continuous utility functions is to find topological conditions on Γ and X in order that there exists a continuous function

$$u: \Gamma \times X \to \mathbb{R}$$

such that $u(\leq, \cdot)$ is a utility function for every $\leq \in \Gamma$.

In [9] Levin proved some results on the existence of jointly continuous utility functions, for example by assuming that Γ and X are locally compact and second countable.

In [7] Levin's results have been generalized to some non-metrizable cases, for instance if Γ and X are submetrizable hemicompact spaces and $\Gamma \times X$ is a k-space.

Back in [1] revisited Levin's Theorems by using partial maps and hypertopologies. He considered the set \mathcal{P} of all linear closed preorders defined on closed subsets of a locally compact second countable space X endowed with the topology of closed convergence $\tau_{\mathcal{F}}$ and the set \mathcal{U} of all continuous real partial maps defined on closed subsets of X with the τ_c topology, a generalization of the compact-open topology. He showed the existence of a continuous map $\nu: \mathcal{P} \to \mathcal{U}$ such that $\nu(\preceq)$ is a utility function for every $\preceq \in \mathcal{P}$.

Under the hypotheses that X is regular and submetrizable by a boundedly compact metric, in [6] we have associated to the space of preorders \mathcal{P} a suitable space of preorders $\widetilde{\mathcal{P}}$ satisfying the hypotheses of Back's Theorem. So, by using Back's result, we proved the following theorem:

Theorem 3 ([6]) Let (X, τ) be regular and submetrizable by a boundedly compact metric ρ . There exists an continuous map

$$\nu: (\mathcal{P}, \tau(\mathcal{L})) \to (\mathcal{U}_{\tau}, \tau_c)$$

such that $\nu(\preceq)$ is a isotone function for \preceq , for every $\preceq \in \mathcal{P}$. Moreover, $\nu(\preceq)$ is a utility function if and only if the ρ -closed preorder $\Gamma(\preceq)$ satisfies the following property: if $a \prec b$ then $\neg b\Gamma(\preceq)a$

The topology on \mathcal{U} is just the τ_c topology, while the topology $\tau(\mathcal{L})$ in \mathcal{P} , defined by mean of a suitable convergence structure, is reminiscent of the topology of closed convergence.

Another generalization of Back's theorem to submetrizable k_{ω} -spaces is presented in [5].

References

- K. Back, Concepts of similarity for utility functions, Journ. of Math. Econ., 15 (1986), 129-142.
- [2] G. Bosi, A. Caterino, R. Ceppitelli, Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions, Tatra Mt. Math. Publ., 47 (2010) 1-13.
- [3] G. Bosi, A. Caterino, R. Ceppitelli, *Multi-utility representation and* k_{ω} -spaces, preprint 2012.
- [4] J. C. Candeal, E. Indurain, G. B. Mehta, Some utility theorems on inductive limits of preordered topological spaces, Bull. Austral. Math. Soc., 52 (1995), 235-246.

- [5] A. Caterino, R. Ceppitelli, Jointly continuous utility functions on k_{ω} -spaces, preprint.
- [6] A. Caterino, R. Ceppitelli, L. Holá, A generalization of Back's Theorem, preprint.
- [7] A. Caterino, R. Ceppitelli, F. Maccarino, Continuous utility functions on submetrizable hemicompact k-spaces, Applied General Topology, 10 (2009), 187-195.
- [8] A. Caterino, R. Ceppitelli, G. B. Mehta, Preference Orders and Continuous Representations, Math. Slovaca 61 (2011), No. 1, 93106
- [9] V. L. Levin, A continuous utility theorem for closed preorders on a σ -compact metrizable space, Soviet Math. Dokl. **28** (1983), 715-718.
- [10] E. Minguzzi, Normally preordered spaces and utilities, Order (2011), DOI: 10.1007/s11083-011-9230-4, arXiv:1106.4457v2.