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On characterizing innerly the set C(X) of real-valued continuous functions on a topological
space X depends essentially on the algebraic structure we are interested in.

Whenever X 6= ∅, the set C(X) endowed with its pointwise defined order becomes a
distributive lattice containing all the constant functions into R, thus a copy of R as a sublattice.
In the sequel, our basic structure on C(X) will be that of “real lattice”. Without loosing
generality we may assume X is completely regular, Hausdorff and even realcompact (since
C(X) is lattice-ordered algebra unit preserving isomorphic to C(µX)).

At the crux of most attempts, if L∗ denotes the bounded elements of a given real lattice L,
then the following conditions somehow are needed: (a) L embeds into some C(X), and (b) L∗

is isomorphic to C∗(X).

Under this general context, the unique contribution appearing in the literature for the
more general case is that of Jensen [9] as a refinement that of Anderson [2], but by assuming
richer compatible algebraic structures, namely for Φ-algebras. Our effort to weaken algebraic
assumptions lead to characterizations of C(X) as Riesz spaces [10, 8], real `-groups [3] or
semi-affine lattices [4]

However, the nicest and purely lattice-theoretic real lattices characterization of C(X) for
X a compact Hausdorff space is that of Anderson-Blair [1]. From this seminal result, and by
adding convenient conditions we may characterize C(X) as a real lattice [5] by constituting a
generalization of the famous problem 81 of Birkhoff and Kaplansky (1948). In [6] we present a
unified approach valid for any “convenient” subcategory of the real lattices.

By identifying the Samuel’s compactification of a uniform space by means of certain par-
titions of a real lattice, and by setting equivalent conditions to equi-uniform continuity, a
characterization of the real lattice U(X) of real-valued uniformly continuous functions on a
uniform space X is derived from [7].
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